The neural learning for robotics research (NLR) laboratory is lead by Dr. Elmar Rueckert and located at the Institute for Robotics and Cognitive Systems at University Lübeck and affiliated with the Technical University Darmstadt.

The group’s research topics are autonomous systems, machine and deep learning, brain-computer interfaces and simulations and computational models.

Short bio: Dr. Elmar Rueckert did his Ph.D. thesis with Prof. Wolfgang Maass in Graz, Austria is the research group leader of the neurorobotics devision at Prof. Jan Peters lab in Darmstadt. With February 2018 he holds a robotics professorship at the University Lübeck. CV of Dr. Elmar Rueckert, E-Mail.


September 18, 2017

Invited Talk at the ICDL Conference, Lisbon, Portugal

Home – Background Slideshow Title: Experience Replay and Intrinsic Motivation in Neural Motor Skill Learning Models

September 18, 2017

3 HUMANOIDS Papers Accepted

Rueckert, E.; Nakatenus, M.; Tosatto, S.; Peters, J. (2017). Learning Inverse Dynamics Models in O(n) time with LSTM networks. Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Efficient Online Adaptation with Stochastic Recurrent Neural Networks. Stark, S.; Peters, J.; Rueckert, E. (2017). A Comparison of Distance Measures for Learning Nonparametric Motor..Read More

September 1, 2017

CoRL Paper accepted

Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals, Proceedings of the Conference on Robot Learning (CoRL).

August 4, 2017

W1 Juniorprofessorship with tenure track at University Lübeck

With February 1st, 2018 I will work as professor for robotics at the university Lübeck.

February 28, 2017

Invited Talk at University Lübeck

Title: Neural models for robot motor skill learning. Abstract:  The challenges in understanding human motor control, in brain-machine interfaces and anthropomorphic robotics are currently converging. Modern anthropomorphic robots with their compliant actuators and various types of sensors (e.g., depth and vision cameras, tactile fingertips, full-body skin, proprioception) have reached the perceptuomotor..Read More

January 31, 2017

Invited Talk at the Frankfurt Institute for Advanced Studies (FIAS), Germany

Learning to Plan through Reinforcement Learning in Spiking Neural Networks Abstract: Movement planing is a fundamental skill that is involved in many human motor control tasks. While the hippocampus plays a central role, the functional principles underlying planning are largely unexplored. In this talk, I present a computational model for planning..Read More

November 18, 2016

Invited Talk at the Institute of Neuroinformatics (INI), Zurich, Switzerland

Probabilistic computational models of human motor control for robot learning.

November 14, 2016

Invited Talk at the Albert-Ludwigs-Universität Freiburg, Germany

Neural models for brain-machine interfaces and anthropomorphic robotics

February 6, 2016

Journal Paper Accepted at Nature Publishing Group: Scientific Reports.

Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control  Nature Publishing Group: Scientific Reports, 6 (28455), 2016.

December 18, 2015

Journal Paper Accepted at Nature Publishing Group: Scientific Reports.

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan Recurrent Spiking Networks Solve Planning Tasks Nature Publishing Group: Scientific Reports, 6 (21142), 2016.

March 1, 2014

Postdoctoral fellow at IAS, Darmstadt

Elmar Rueckert joined the Autonomous Systems Labs of Prof. Jan Peters as Post-Doc in March 2014.

February 4, 2014

Ph.D. Defense – Summa Cum Laude (with honors).

At the Technical University Graz, Austria with Prof. Wolfgang Maass.

June 1, 2013

Two Journal Papers Accepted at Frontiers in Computational Neurosciene

Rueckert, Elmar; d’Avella, Andrea Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems Rueckert, Elmar; Neumann, Gerhard; Toussaint, Marc; Maass, Wolfgang Learned graphical models for probabilistic planning provide a new class of movement primitives

January 28, 2010

M.Sc. defense – Summa Cum Laude (with honors).

At the technical University Graz with Prof. Horst Bischof.