Sicheres Autonomes Fahren mit Probabilistischen Neuronalen Netzen

Wir Menschen sind in der Lage unter widrigen Bedingungen z.B. bei eingeschränkter Sicht, oder bei Störungen komplexe Vorgänge wahrzunehmen, vorherzusagen und innerhalb von wenigen Millisekunden zusammenhängende Entscheidungen zu treffen. Mit dem zunehmenden Grad der Automatisierung steigen auch die Anforderungen an künstliche Systeme. Immer komplexere und größere Datenmengen müssen verarbeitet werden um autonome Entscheidungen zu treffen. Mit gängigen KI Ansätzen stoßen wir aufgrund der konvergierenden Miniaturisierung an Grenzen, die z.B. im Bereich des autonomen Fahrens nicht ausreichen, um ein sicheres autonomes System zu entwickeln.

Ziel dieser Forschung ist es probabilistische Vorhersagemodelle in massiv parallelisierbaren neuronalen Netzen zu implementieren und mit diesen komplexe Entscheidungen Aufgrund erlernter interner Vorhersagemodelle zu treffen. Die neuronalen Modelle verarbeiten hoch dimensionale Daten moderner und innovativer taktiler und visueller Sensoren. Wir testen die neuronalen Vorhersage und Entscheidungsmodelle in humanoiden Roboteranwendungen in dynamischen Umgebungen.

Unser Ansatz beruht auf der Theorie der probabilistischen Informationsverarbeitung in neuronalen Netzen und unterscheidet sich somit grundlegend von den gängigen Methoden tiefer neuronaler Netze. Die zugrundeliegende Theorie ermöglicht weitreichende Modelleinblicke und erlaubt neben den Vorhersagen von Mittelwerten auch Unsicherheiten und Korrelationen. Diese zusätzlichen Vorhersagen sind entscheidend für verlässliche, erklärbare und robuste künstliche Systeme und sind eines der größten offenen Probleme in der künstlichen Intelligenz Forschung.

Dieses Projekt wurde mit dem Deutschen KI-Nachwuchspreis der Bilanz Deutschland Wirtschaftsmagazin GmbH geehrt und demonstriert die Wichtigkeit für Grundlagenforschung in der künstlichen Intelligenz.